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Abstract
Breast cancer remains a major global health challenge, with approximately 80% 
of cases classified as estrogen receptor-positive (ER+). Fulvestrant, a steroidal 
antiestrogen and selective estrogen receptor degrader (SERD), is widely used 
in ER+ breast cancer therapy; however, its clinical efficacy is limited by low 
bioavailability and resistance. In this study, we employed a computational approach 
to evaluate Fulvestrant analogues for their predicted interaction with the estrogen 
receptor alpha (ERα). Molecular docking identified three analogues (9BETA,11ALPHA,
13ALPHA,14BETA,17ALPHA)-11-(METHOXYMETHYL) ESTRA-1(10),2,4-TRIENE-3,17-DIOL 
[EED], 2-Hydroxyestradiol, and Ethinylestradiol with more favorable binding energy 
(BE) values than Fulvestrant. Molecular dynamics (MD) simulations suggested that 
2-Hydroxyestradiol maintains computationally stable and compact ERα complexes 
comparable to Fulvestrant, supported by hydrogen-bond analyses. Absorption, 
Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictions indicated that 
Fulvestrant maintained the most favorable safety profile despite pharmacokinetic 
limitations, while 2-Hydroxyestradiol displayed more predictable metabolism but 
raised concerns of hepatotoxicity and carcinogenicity. EED and Ethinylestradiol were 
further constrained by significant toxicity risks. Overall, the computational evidence 
highlights 2-Hydroxyestradiol as a theoretically promising scaffold for further 
structural optimization rather than as a direct therapeutic candidate. These exclusive 
in-silico findings provide predictive insights for prioritizing Fulvestrant analogues; 
however, experimental validation through in vitro ERα binding, cytotoxicity assays in 
ER+ breast cancer cell lines, followed by in vivo studies is essential to assess clinical 
relevance.
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1  Introduction
Breast cancer remains a major global health concern and is among the leading causes 
of cancer-related mortality in women. In the United States, it ranks second only to lung 
cancer and accounts for approximately 12.5% of all newly diagnosed cancers worldwide, 
making it the most prevalent cancer type globally [1]. The alarming statistics reveal that 
about 13% (approximately one in eight) of U.S. women are expected to develop invasive 
breast cancer during their lifetime [2]. A substantial proportion of these cases are estro-
gen receptor-positive (ER+), with nearly 80% of breast tumors expressing the estrogen 
receptor (ER). The growth and survival of ER+ breast cancer cells are largely dependent 
on estrogen, which binds to the receptor and activates signaling pathways that drive 
tumor proliferation [3, 4]. Estrogen exerts its effects primarily through two receptor sub-
types, estrogen receptor alpha (ERα) and estrogen receptor beta (Erβ). In healthy breast 
tissue, ERα is expressed in only a small subset of cells; however, its prevalence markedly 
increases to nearly 80% in breast cancer cells. The transcriptional activity of ERα is regu-
lated by two activation domains: AF1 and AF2. AF1, located in the N-terminal domain, 
can be activated independently of estrogen through phosphorylation, whereas AF2, situ-
ated in the ligand-binding domain, requires estrogen binding for its activation [5–7].

Current therapeutic strategies for ER+ breast cancer largely rely on endocrine (hor-
monal) therapy, particularly in postmenopausal women to inhibit estrogen signaling [8, 
9]. Among these therapies, Fulvestrant (Faslodex®, FDA approved) [10], a steroidal anti-
estrogen has emerged as an effective treatment drug for ER+ breast cancer. Fulvestrant 
exerts its effects by competitively binding to ERα, functioning both as a selective estro-
gen receptor degrader (SERD) and a complete antagonist. Its binding induces a confor-
mational change in ERα that disrupts AF1 and AF2-mediated transcriptional activity, 
while also destabilizing the receptor-ligand complex, leading to accelerated receptor 
degradation [11, 12]. This dual mechanism reduces ERα protein levels and prevents 
receptor dimerization and nuclear localization, thereby effectively eliminating estrogen 
signaling [13]. Fulvestrant exhibits a high affinity for ERα, approximately 89% that of 
estradiol, making it a potent inhibitor of estrogen-driven tumor growth [14]. Thus, Ful-
vestrant simultaneously binds to, blocks, and degrades ERα, achieving comprehensive 
suppression of estrogen signaling.

Despite these advantages, Fulvestrant is limited by poor bioavailability and the fre-
quent development of tumor resistance through alternative signaling mechanisms 
[15]. Consequently, there is a pressing need to design novel Fulvestrant analogues with 
improved pharmacological profiles; particularly those that retain potent antagonistic 
activity without partial agonist effects, and exhibit enhanced bioavailability [16]. Fig-
ure 1a illustrates estrogen-ERα binding, while Fig. 1b demonstrates the competitive inhi-
bition exerted by Fulvestrant and its analogues.

Recent efforts have increasingly focused on the discovery and characterization of Ful-
vestrant analogues with improved antiestrogenic activity. A key aspect of these efforts 
is understanding the structural features of analogues that are critical for achieving high 
binding affinity to ERα and potent antiestrogenic effects [17, 18]. Traditionally, analogues 
with superior binding affinity are identified through experimental ERα binding studies, 
typically involving controlled equilibrium binding assays using radiolabeled compounds 
[19, 20]. In contrast, computational approaches such as molecular docking, molecu-
lar dynamics (MD) simulations, and in silico Absorption, Distribution, Metabolism, 
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Excretion, and Toxicity (ADMET) profiling provide efficient and robust alternatives 
for rapidly evaluating ligand-receptor interactions and drug-likeness. Although several 
SERDs and steroidal ERα antagonists have been explored using computational methods 
[21, 22], most existing studies focus on a limited set of molecules and do not integrate 
dynamic stability or pharmacokinetic considerations. Recent reports have highlighted 
the therapeutic potential of steroid-based scaffolds for ERα inhibition [23, 24]; however, 
there remains a clear gap in the systematic comparison of Fulvestrant analogues using a 
unified computational framework that combines molecular docking, MD simulations, 
and ADMET profiling. Moreover, computational studies specifically examining Fulves-
trant and its structural analogues are limited [25], and further investigation is needed 
to elucidate how structural variations influence their interactions with ERα, particularly 
with respect to key binding moieties and engagement within the ligand-binding domain. 
Therefore, an integrated computational strategy is essential for identifying structurally 
diverse analogues with favorable binding behavior and drug-like properties, thereby 
enabling rational prioritization prior to experimental validation.

In the present study, we employed an integrated computational method to investigate 
Fulvestrant analogues with the potential to overcome current therapeutic limitations in 
ER+ breast cancer. Molecular docking was first performed to evaluate the binding affini-
ties and interaction patterns of fifteen analogues with ERα, from which three top can-
didates were shortlisted. Subsequently, MD simulations were conducted to assess the 
structural stability, flexibility, and compactness of the ligand-ERα complexes. Finally, 
physicochemical, pharmacokinetic, and toxicity properties were evaluated through 
ADMET predictions to determine their suitability as drug candidates. This compre-
hensive in-silico assessment provides valuable insights into the therapeutic potential of 
Fulvestrant analogues and may facilitate the development of improved endocrine thera-
pies for breast cancer, particularly in addressing drug resistance. Overall, the aim of this 
study was to identify Fulvestrant analogues with superior binding affinity and stability 
toward ERα using a unified computational framework that integrates molecular docking, 
MD simulations, and ADMET profiling, thereby evaluating their potential as enhanced 
antiestrogen agents for ER+ breast cancer.

Fig. 1  Schematic illustrating the mechanism of (a) Estrogen hormone binding to the estrogen receptor alpha 
(ERα) and (b) competitive inhibition by Fulvestrant and its analogues, which bind to ERα in place of estrogen
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2  Methodology
2.1  Screening of structurally similar analogues to fulvestrant

A critical step in identifying potent Fulvestrant analogues (ligands) involved screening 
compounds that were already reported in databases such as DrugBank and Research 
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB). Only those 
analogues closely resembling Fulvestrant in structure were considered, as this targeted 
approach increases the likelihood of identifying ligands with higher binding affinities for 
ERα. Fulvestrant, characterized by its steroidal moiety, exhibits a binding mechanism 
similar to estrogen, where the four hydrocarbon rings of the estradiol core establish van 
der Waals contacts with hydrophobic residues of ERα [26], while its hydroxyl groups 
facilitate hydrogen bonding. To select structurally relevant analogues, we employed a 
ligand-based screening strategy, applying a structural similarity threshold (≥ 0.6 with 
Fulvestrant) [27].

Structural similarity values were obtained directly from the DrugBank database, which 
computes similarity using its built-in Tanimoto coefficient based on molecular finger-
prints. These similarity values quantify the structural relatedness of each analogue to 
Fulvestrant. Only those ligands containing the characteristic four-ring steroidal core 
were retained for our ligand-based screening (Table 1). Additional filters were applied to 
capture differences in hydroxyl group positioning and side chain substitutions, which are 
known to influence ERα binding. Our recent work has also utilized a structural similar-
ity approach to screen analogues for different moieties [28]. Table 1 presents the list of 
Fulvestrant analogues including their DrugBank IDs, available RCSB PDB IDs, molecu-
lar structures, formulas, and similarity index (compared to Fulvestrant), as well as their 
status of usage in the study screened for evaluation of their binding affinities with the 
ERα.

2.2  Molecular docking studies

Molecular docking serves as a crucial tool in identifying favorable interactions within 
protein–ligand or protein–protein complexes, primarily based on their binding affin-
ity. It predicts how the ligands or proteins fit into protein pockets of the receptor and 
the strength of their binding, forming a complex [29]. In addition, molecular docking 
provides insights into the types of interactions involved, such as van der Waals forces, 
hydrogen bonds, amide bonds, and π-interactions, as well as the amino acid residues 
responsible for binding[30]. In this study, molecular docking was performed for all 
screened ligands (Table 1) with the ERα using AutoDock 4.2.6 to calculate their bind-
ing energies (BE, kcal/mol), where more negative BE values indicate stronger predicted 
binding. Ligand structure data files (SDF) were retrieved from the DrugBank and RCSB 
PDB databases and converted to PDBQT format using Open Babel 2.4.1. The receptor 
structure (PDB ID: 1X7E) was prepared by removing crystallographic water molecules 
to prevent non-biological interactions, repairing missing atoms, adding polar hydrogens, 
and assigning and redistributing Kollman charges. Ligands were introduced by detect-
ing the torsion root. To avoid bias in binding-site selection, blind docking was con-
ducted using a grid box sufficiently large to cover the entire receptor (126 × 126 × 126 
points, 0.375 A° spacing, centered at X = 41.752, Y = 25.913, Z = 23.614) [30, 31]. Docked 
poses were clustered using a 2.0 A° root mean square deviation (RMSD) threshold. 
The docking results consistently revealed that the ligands bound to the same site as the 
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S. 
No

Ligand name
[with DrugBank (DB) and RCSB PDB IDs]

Molecular 
structure

Molecular 
formula

Simi-
larity 
index

Sta-
tus

1 2-Hydroxyestradiol
(DB ID: DB07706)
(PDB ID: ECS)

C18H24O3 0.71 Mod-
eled

2 Ethinylestradiol
(DB ID: DB00977)
(PDB ID: 3WF)

C20H24O2 0.693 Mod-
eled

3 (9BETA,11ALPHA,13ALPHA,14BETA,17ALPHA)-11-
(METHOXYMETHYL) ESTRA-1(10),2,4-TRIENE-3,17-DIOL 
[EED]
(DB ID: DB07707)
(PDB ID: EED)

C20H28O3 0.66 Mod-
eled

4 Fluoroestradiol F-18
(DB ID: DB15690)

C18H23FO2 0.735 Eli-
gible

5 Estriol
(DB ID: DB04573)
(PDB ID: ESL)

C18H24O3 0.718 Eli-
gible

6 Estetrol
(DB ID: DB12235)
(PDB ID: 4OH)

C18H24O4 0.696 Eli-
gible

7 Epimestrol
(DB ID: DB13386)

C19H26O3 0.688 Eli-
gible

8 2-Methoxyestradiol
(DB ID: DB02342)
(PDB ID: ESM)

C19H26O3 0.683 Eli-
gible

9 Mestranol
(DB ID: DB01357)

C21H26O2 0.66 Eli-
gible

Table 1  Fulvestrant analogues (ligands) screened for evaluating their binding affinities with 
estrogen receptor alpha (ERα)
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S. 
No

Ligand name
[with DrugBank (DB) and RCSB PDB IDs]

Molecular 
structure

Molecular 
formula

Simi-
larity 
index

Sta-
tus

10 Promestriene
(DB ID: DB12487)

C22H32O2 0.635 Eli-
gible

11 (9ALPHA,13BETA,17BETA)-2-[(1Z)-BUT-1-EN-1-YL] 
ESTRA-1,3,5(10)-TRIENE-3,17-DIOL
(DB ID: DB07678)
(PDB ID: DRQ)

C22H30O2 0.61 Eli-
gible

12 Estrone
(DB ID: DB00655)
(PDB ID: J3Z)

C18H22O2 0.607 Eli-
gible

13 (16ALPHA,17ALPHA)-ESTRA-1,3,5(10)-TRIENE-3,16,17-TRIOL
(DB ID: DB07702)
(PDB ID: E3O)

C18H24O3  < 0.6 Not 
eli-
gible

14 11-[3,17beta-dihydroxyestra-1,3,5(10)-trien-7beta-yl]-N-
methyl-N-propylundecanamide
(DB ID: DB01069)
(PDB ID: 3YJ)

C33H53NO3  < 0.6 Not 
eli-
gible

15 N-BUTYL-11-[(7R,8R,9S,13S,14S,17S)-3,17-DIHY-
DROXY-13-METHYL-7,8,9,11,12,13,14,15,16,17-
DECAHYDRO-6H-CYCLOPENTA[A]
PHENANTHREN-7-YL]-N-METHYLUNDECANAMIDE
(DB ID: DB03860)
(PDB ID: AOE)

C34H55NO3  < 0.6 Not 
eli-
gible

Table 1  (continued) 
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co-crystallized ligand, corresponding to the experimentally validated ligand-binding 
domain of ERα. Although an overlay image could not be included, blind docking consis-
tently reproduced the experimentally validated co-crystallized binding site, as evidenced 
by the alignment of key residues (GLU353, ARG394, PHE404, and GLY521) across all 
top-ranked poses (Table 3).

Molecular docking was performed using the Lamarckian Genetic Algorithm (LGA) 
with the following settings: 50 GA runs, a population size of 300, a mutation rate of 
0.02, a crossover rate of 0.8, and 2–25 million energy evaluations. The AutoDock scoring 
function, which incorporates van der Waals, electrostatic, hydrogen bonding, and desol-
vation terms, was used to compute BE values. Although 2D interaction diagrams do not 
explicitly display van der Waals contacts, these interactions are fully accounted for in the 
AutoDock 4.2.6 scoring function. Docking results were visualized using BIOVIA Dis-
covery Studio Visualizer, and the three ligands with the most favorable BE values were 
selected for MD simulations (as described in Sect. 2.1).

All docking parameters used in this study are summarized in Table 2, and the over-
all docking workflow is illustrated in Fig. 2. It should be noted that in AutoDock 4.2.6, 
the BE values are calculated using a scoring function that integrates van der Waals, 
electrostatic, hydrogen bonding, and desolvation contributions. Thus, van der Waals 

Table 2  Summary of docking parameters used for AutoDock 4.2.6 simulations of ERα-ligand 
complexes
Parameter Description/value
Software AutoDock 4.2.6

Ligand preparation Structures retrieved from RCSB PDB / DrugBank; con-
verted from SDF to PDBQT using Open Babel 2.4.1

Estrogen receptor alpha (ERα) PDB ID: 1X7E (co-crystallized ligand removed; polar 
hydrogens added; Kollman charges assigned)

Docking type Blind docking (covering entire receptor)

Grid Box dimensions 126 × 126 × 126 points

Grid spacing 0.375 A°

Algorithm Lamarckian Genetic Algorithm (GA)

Number of GA runs 50

Population size 300

Maximum number of evaluations 2.5 × 106

Maximum number of generations 27,000

Energy evaluations 50,000 steps per run

Output/Analysis tools BIOVIA Discovery Studio Visualizer 2020 for visualiza-
tion and interaction mapping

S. 
No

Ligand name
[with DrugBank (DB) and RCSB PDB IDs]

Molecular 
structure

Molecular 
formula

Simi-
larity 
index

Sta-
tus

16 Fulvestrant
(DB ID: DB00947)
(PDB ID: FVS)

C32H47F5O3S 1 Base

Table 1  (continued) 
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Fig. 2  Flowchart illustrating the steps involved in the molecular docking simulation
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interactions were inherently considered in the docking calculations, even though they 
are not displayed separately in the 2D interaction diagrams generated with BIOVIA Dis-
covery Studio Visualizer.

2.3  Visualization of docking poses and interactions of ERα-ligand complex

Visualization of docking poses is essential for interpreting molecular interactions and 
validating docking results. These graphical analyses provide insights into the orientation 
of ligands within the receptor binding site and the types of interactions that stabilize 
the complexes[32]. In this study, the docking poses of ERα with its ligands were exam-
ined to evaluate binding efficacy and interaction profiles. The conformations with the 
lowest BE values for each ERα-ligand complex were extracted from AutoDock output 
files (PDBQT format) and converted to PDB format using Open Babel 2.4.1 [33]. These 
structures were then imported into BIOVIA Discovery Studio Visualizer[34], where 
receptor and ligand definitions were assigned. Receptor surfaces were visualized to high-
light hydrogen bonds, bond distances were measured, and 2D interaction diagrams were 
generated to display hydrogen bonds, π-interactions, and other contacts between amino 
acid residues and the ligand. This visualization approach provides a detailed picture of 
the molecular interactions underlying docking outcomes and facilitates a better under-
standing of the binding mode of Fulvestrant analogues.

2.4  MD simulation of various ERα-ligand complexes

MD simulation is a powerful computational approach for investigating the structural 
behavior of biomolecules and their interactions with ligands over time. By captur-
ing atomic movements and conformational changes, MD simulation provides valuable 
insights into protein stability, flexibility, and binding mechanisms, making it an essen-
tial tool in modern drug discovery [35]. In this study, MD simulations of the ERα-
ligand complexes were performed using GROMACS 2022.3 with the CHARMM36m 
force field. Ligand topologies were generated using CGenFF (v4.6) and converted to 
GROMACS format using cgenff_charmm2gmx.py [36]. Each complex was solvated in a 
dodecahedral TIP3P water box with 1.0 nm padding, neutralized, and adjusted to 0.15 M 
NaCl, and the topology file of complex was created.

A positional restraint parameter was included to provide stable relaxation and prevent 
ligand from drifting away from the binding site. Energy minimization was performed 
using the steepest-descent algorithm (50,000 steps). Equilibration consisted of 100  ps 
NVT (310  K, Berendsen thermostat) through gmx mdrun -deffnm nvt module fol-
lowed by 100 ps NPT (1 bar, Parrinello-Rahman barostat) using gmx mdrun -deffnm npt 
module. Thermostat is applied to the coupled system of protein and ligand to prevent 
system blow up. Production MD simulations were run for 50 ns per replica (three repli-
cas) using a 2 fs timestep, NPT ensemble, Nosé-Hoover thermostat (310 K), Parrinello-
Rahman barostat, PME electrostatics, 1.2 nm cutoffs, and LINCS constraints [31] on all 
bonds. Trajectory analyses [RMSD, root mean square fluctuation (RMSF), and radius of 
gyration (Rg)] were performed using GROMACS tools. The overall workflow for MD 
simulations is summarized in Fig. 3.



Page 10 of 25Balpande et al. Discover Chemistry            (2026) 3:43 

Fig. 3  Flowchart illustrating the sequential steps followed in the MD simulation procedure
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2.5  Hydrogen bonding analysis

Hydrogen bonding is a key factor in stabilizing protein–ligand interactions and strongly 
influences binding affinity [37]. Therefore, during MD simulations, we analyzed the for-
mation and persistence of hydrogen bonds within each ligand-ERα complex. This eval-
uation provided insights into the specificity of ligand binding and the overall stability 
of the complexes throughout the simulation trajectory. The number and occupancy of 
hydrogen bonds were quantified using the ‘gmx hbond' command in GROMACS, which 
calculates hydrogen bond formation between protein residues and ligands over the 
course of the simulation. Hydrogen bonds were identified using the gmx hbond module 
in GROMACS, applying a donor–acceptor distance cutoff of ≤ 3.5 A° (0.35  nm) and a 
donor-hydrogen-acceptor angle cutoff of ≤ 30°, which correspond to the default criteria 
for hydrogen-bond detection in GROMACS.

2.6  ADMET analysis of ligands

ADMET analysis was performed to evaluate the physicochemical and pharmacoki-
netic properties of the screened ligands using ADMETlab 3.0 software (accessed April 
29, 2025) [38, 39]. By comprehensively assessing these factors, ADMET studies provide 
insights into drug-body interactions and help minimize the risk of adverse effects [40, 
41]. The physicochemical parameters analyzed included molecular weight (MW), num-
ber of rings (nRing), formal charge (fChar), number of heteroatoms (nHet), size of the 
largest ring (MaxRing), number of rotatable bonds (nRot), topological polar surface area 
(TPSA), number of hydrogen bond donors (nHD), number of hydrogen bond acceptors 
(nHA), distribution coefficient (logD), solubility (logS), and partition coefficient (logP). 
The pharmacokinetic properties evaluated included Human intestinal absorption (HIA), 
volume of distribution (VD), blood–brain barrier (BBB) penetration, plasma protein 
binding (PPB), cytochrome (CYP) inhibition/substrate profiles), excretion, and toxicity 
(AMES mutagenicity, hepatotoxicity, and carcinogenicity) prediction. These analyses 
provide a comprehensive evaluation of the drug-likeness, pharmacological behavior, and 
potential risks associated with the selected ligands, supporting their assessment as Ful-
vestrant analogues.

3  Results and discussions
3.1  Molecular docking studies

All the ligands (listed in Table 1) were docked with the ERα, and their BE values were 
calculated. The BE values were used to identify ligands with stronger binding affinities 
for ERα compared to Fulvestrant, where a more negative BE value indicates stronger 
binding affinity [34]. Table 3 presents the ligands ranked according to their BE values, 
with several ligands exhibiting docking scores close to -10 kcal/mol. Among these, the 
top three ligands with the most negative BE values were (9BETA,11ALPHA,13ALPHA
,14BETA,17ALPHA)-11-(METHOXYMETHYL) ESTRA-1(10),2,4-TRIENE-3,17-DIOL 
[EED], 2-Hydroxyestradiol, and Ethinylestradiol, with respective BE values of -10.80, 
-10.63, and -10.36 kcal/mol, all of which are substantially more negative than that of Ful-
vestrant (-6.49 kcal/mol) (Table 3), suggesting that these analogues could serve as poten-
tial alternatives for inhibiting estrogen binding to ERα.

A BE of approximately − 10  kcal/mol typically reflects a strong and stable receptor-
ligand interaction, indicating that these ligands may possess substantial inhibitory 
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potential toward ERα. These analogues exhibit approximately 40–60% stronger binding 
affinity than Fulvestrant, based on the proportional difference between their BE values 
and that of Fulvestrant. Although nearly seven ligands demonstrated BE values close 
to − 10 kcal/mol, we selected only the top three EED, 2-Hydroxyestradiol, and Ethinyl-
estradiol for further MD simulation and ADMET analysis. The selection was based on 
their superior ranking in docking energies, they represent structurally diverse modifica-
tions of the estradiol scaffold (including a methoxy-substituted analogue, a hydroxylated 
analogue, and a synthetic estrogen analogue), enabling us to explore different chemical 
variations in relation to ERα binding, and the computational feasibility of conducting 
detailed simulations. Additionally, preliminary drug-likeness screening (Sect.  3.3) sug-
gested that these three ligands possessed more favorable physicochemical properties 
compared to the other candidates with similar docking scores. Furthermore, the other 
ligands with comparable docking scores were unsuitable for therapeutic repurposing; for 
example, Fluoroestradiol F-18 is an FDA-approved diagnostic radiotracer rather than a 
drug candidate, and therefore was excluded from further analysis[42].

Figures  4, 5, 6, 7 showcase the docked poses of the selected ligands EED, 
2-Hydroxyestradiol, Ethinylestradiol, and Fulvestrant with the ERα. The numerical val-
ues provided represent the bond lengths associated with the formed bonds. Addition-
ally, these figures present a 2D plot depicting interactions with surrounding amino acid 
residues. It should be noted that van der Waals interactions were inherently accounted 
in the docking BEs by AutoDock 4.2.6. Table 4 illustrates the type of interactions and the 
amino acid residues involved during complex formation. The docking protocol was vali-
dated by redocking the co-crystallized ligand, which reproduced the experimental pose 
with an RMSD < 2 A°, confirming the reliability of the docking procedure.

The strong BEs observed for EED, 2-Hydroxyestradiol, and Ethinylestradiol suggest 
that structural modifications to the steroidal scaffold can significantly enhance ERα 

Table 3  Binding energy (BE) values obtained from molecular docking of Fulvestrant analogues 
(ligands) with the estrogen receptor alpha (ERα) in ER+ breast cancer cells
S.No Ligand name Binding 

energy, BE 
(kcal/mol)

1 (9BETA,11ALPHA,13ALPHA,14BETA,17ALPHA)-11-(METHOXYMETHYL) ESTRA-1(10),2,4-
TRIENE-3,17-DIOL (EED)

 − 10.80

2 2-Hydroxyestradiol  − 10.63

3 Ethinylestradiol  − 10.36

4 Fluoroestradiol F-18  − 10.34

5 (16ALPHA,17ALPHA)-ESTRA-1,3,5(10)-TRIENE-3,16,17-TRIOL  − 10.30

6 Epimestrol  − 10.20

7 Estriol  − 10.01

8 Estetrol  − 9.76

9 Mestranol  − 9.71

10 2-Methoxyestradiol  − 9.20

11 Promestriene  − 9.05

12 (9ALPHA,13BETA,17BETA)-2-[(1Z)-BUT-1-EN-1-YL] ESTRA-1,3,5(10)-TRIENE-3,17-DIOL  − 8.98

13 Estrone  − 8.59

14 11-[3,17beta-dihydroxyestra-1,3,5(10)-trien-7beta-yl]-N-methyl-N-propylundecanamide  − 8.13

15 N-BUTYL-11-[(7R,8R,9S,13S,14S,17S)-3,17-DIHYDROXY-13-METH-
YL-7,8,9,11,12,13,14,15,16,17-DECAHYDRO-6H-CYCLOPENTA[A]
PHENANTHREN-7-YL]-N-METHYLUNDECANAMIDE

 − 7.87

16 Fulvestrant  − 6.49
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affinity. In particular, hydroxyl substitutions are known to facilitate hydrogen bonding 
within the ligand-binding domain (LBD), while bulky substituents contribute to hydro-
phobic stabilization [38]. This is consistent with our observation that 2-Hydroxyestradiol 
achieved docking energies comparable to or better than Fulvestrant. Previous studies 
have similarly reported that hydroxylated estradiol derivatives can retain high ERα affin-
ity, supporting their potential as antiestrogenic analogues [39]. Thus, docking results 
provide a rationale for prioritizing these analogues for dynamic stability analysis.

The detailed analysis of the binding poses and interactions reveal that these top ligands 
form extensive and diverse interactions with the ERα, contributing to their high binding 
affinities. Table 4 illustrate that EED ligand with the most negative BE value, interacts 
with amino acids ARG A:394, GLU A:353, and GLY A:521 through conventional hydro-
gen bonds, and with PHE A:404 through pi-pi interactions, among other hydrophobic 
interactions. Similarly, 2-Hydroxyestradiol and Ethinylestradiol exhibited strong bind-
ing through multiple conventional hydrogen bonds with GLY A:521, GLU A:353, and 

Fig. 5  Binding poses of EED with ERα showing the corresponding bond distances, along with a 2D representation 
depicting the interactions with key amino acid residues

 

Fig. 4  Binding poses of Fulvestrant with ERα showing the corresponding bond distances, along with a 2D repre-
sentation depicting the interactions with key amino acid residues
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ARG A:394, and pi-pi interactions with PHE A:404, in addition to several alkyl interac-
tions stabilizing the ligand within the receptor binding site. In comparison, Fulvestrant, 
although an effective ERα antagonist in clinical settings, demonstrated fewer and less 
diverse interactions, leading to a higher (less negative) BE value. Fulvestrant primar-
ily interacted with residues SER A:527, GLU A:419, and HIS B:547 through hydrogen 
bonds, and with HIS A:524 through pi-pi interactions, along with limited alkyl inter-
actions. The significant binding affinities of EED, 2-Hydroxyestradiol, and Ethinylestra-
diol, as evidenced by their strong interactions and more negative BE values, suggest their 
potential as promising alternatives to Fulvestrant for inhibiting estrogen binding to ERα 
in ER+ breast cancer cells. These findings indicate that further studies, including MD 
simulations, are necessary to explore their compactness, stability, flexibility behavior 
during the complex formation with the ERα.

Fig. 7  Binding poses of Ethinylestradiol with ERα showing the corresponding bond distances, along with a 2D 
representation depicting the interactions with key amino acid residues

 

Fig. 6  Binding poses of 2-Hydroxyestradiol with ERα showing the corresponding bond distances, along with a 2D 
representation depicting the interactions with key amino acid residues
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3.2  MD simulation studies

To better understand the dynamic interactions between the selected ligands and the 
ERα, MD simulations were performed for the ERα complexes with EED, 2-Hydroxyestra-
diol, Ethinylestradiol, and Fulvestrant. These ligands were prioritized for simulation on 
the basis of their docking results, where each demonstrated significantly more negative 
BE values compared to the ERα-Fulvestrant complex. The aim of MD simulations was 
to assess structural stability, flexibility, and compactness of the complexes over time, 
thereby offering insights into the mechanisms by which these ligands may function as 
potential Fulvestrant analogues. To achieve this, RMSD plots were generated to monitor 
structural deviations of the ligands during their interaction with the ERα. RMSF plots 
were employed to evaluate residue-level flexibility, and Rg plots were analyzed to assess 
overall compactness of the complexes. The ERα-Fulvestrant complex was used as the ref-
erence standard for comparison.

RMSD trajectories (Fig. 8a) revealed clear differences in complex stability among the 
ligands. The ERα-Fulvestrant (black) and ERα-2-Hydroxyestradiol (green) complexes 
exhibited low RMSD values (low fluctuations), remaining within the accepted range 
of 0.1–0.5  nm [43] throughout the simulation, which indicates strong conformational 
stability and robust binding. In contrast, the complexes with EED and Ethinylestradiol 
showed higher RMSD values and larger deviations, pointing to moderate stability and 
greater conformational perturbations during the simulation.

These observations suggest that 2-Hydroxyestradiol forms a stable complex with ERα, 
comparable to Fulvestrant, whereas EED and Ethinylestradiol fail to achieve similar sta-
bility. RMSF analysis (Fig. 8b) provided residue-level insights into protein flexibility[35]. 
All four complexes displayed multiple peaks, reflecting localized fluctuations within the 
ERα structure during ligand binding. The overall similarity in RMSF profiles across Ful-
vestrant and its analogues indicates that each ligand effectively engages with the ERα 

Table 4  Amino acid residues of estrogen receptor alpha (ERα) invloved in interactions with the 
ligands EED, 2-Hydroxyestradiol, Ethinylestradiol, and Fulvestrant, classified according to the type of 
molecular interaction
Sr. 
No

Ligand Amino acid residues of ERα classified based on the type of bonds
Conventional 
Hbond

Carbon 
Hbond

Pi-Pi Alkyl Pi-
sig-
ma

1 (9BETA,11ALPHA
,13ALPHA,14BET
A,17ALPHA)-11-
(METHOXYMETHYL) 
ESTRA-1(10),2,4-
TRIENE-3,17-DIOL 
(EED)

ARG A:394, GLU 
A:353, GLY A:521

– PHE 
A:404

MET A:388, ILE A:424, LEU A:391, 
ALA A:350, LEU A:387

–

2 2-Hydroxyestradiol GLY A:521, GLU 
A:353, ARG A:394

– PHE 
A:404

ILE A:424, MET A:421, HIS A:524, 
LEU A:525, LEU A:387, LEU A:391, 
MET A:388, LEU A:384, LEU A:346, 
ALA A:350

–

3 Ethinylestradiol GLY A:521, GLU 
A:353, ARG A:394

– PHE 
A:404

HIS B:524, MET B:421, MET B:343, 
TRP B:383, LEU B:384, ALA B:350, 
LEU B:391, MET B:388

LEU 
B:387

4 Fulvestrant SER A:527, GLU 
A:419, HIS B:547

THR 
B:460, 
PHE 
B:461

HIS 
A:524

ILE A:424, LYS A:520 –



Page 16 of 25Balpande et al. Discover Chemistry            (2026) 3:43 

Fig. 8  a Root mean square deviation (RMSD), b root mean square fluctuation (RMSF), and c radius of gyration (Rg) 
trajectories of EED, 2-Hydroxyestradiol, Ethinylestradiol, and Fulvestrant during their complex formation with ERα
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binding pocket. However, higher peaks in certain regions for EED and Ethinylestradiol 
suggest that their interactions induce more pronounced flexibility, consistent with their 
less stable RMSD profiles. The Rg plots (Fig. 8c) offered further validation of complex 
stability by assessing compactness. A consistent range of Rg values throughout the simu-
lation duration suggests the compactness of the formed complexes. For all four ligands, 
Rg values remained relatively stable within the range of 2.26–2.36  nm [44], signifying 
uniform distribution of atoms and preservation of ERα structural integrity. These results 
indicate that all complexes achieved compact conformations without loss of protein 
function.

The MD simulation studies collectively demonstrate that 2-Hydroxyestradiol closely 
resembles Fulvestrant in terms of RMSD, RMSF, and Rg parameters, forming a stable, 
compact, and flexible complex with ERα. This stability is likely attributable to its ability 
to form consistent hydrogen bonds and maintain tight protein–ligand packing, features 
that contribute to effective receptor engagement. In contrast, EED and Ethinylestradiol 
exhibited higher RMSD values and greater fluctuations, suggesting reduced stability 
and less favorable binding dynamics. Such differences are important, as MD simula-
tions capture conformational changes that are often overlooked in docking-only studies. 
Similar computational analyses of estradiol derivatives have demonstrated that dynamic 
stability is a key determinant of antagonist potential[45]. These findings reinforce that 
2-Hydroxyestradiol may serve as a more reliable analogue for further investigation.

Hydrogen bonding plays a critical role in stabilizing protein–ligand complexes, with 
higher hydrogen bond occupancy generally correlating with stronger binding affinity and 
increased stability [46–48]. In this study, the dynamics of hydrogen bond interactions 
between ERα and the ligands were assessed throughout the MD simulation. Figure 9a–d 
illustrates the number and stability of hydrogen bonds formed in complexes with Ful-
vestrant, EED, 2-Hydroxyestradiol, and Ethinylestradiol, respectively. For the reference 
complex, ERα-Fulvestrant (Fig. 9a), hydrogen bond interactions fluctuated dynamically 
across the simulation, and consistently exhibited high occupancy, with multiple bonds 
forming simultaneously at several intervals.

This indicates that Fulvestrant maintains stable and robust interactions with ERα, con-
sistent with its role as a potent estrogen receptor antagonist. In comparison, the ERα-
EED complex (Fig.  9b) displayed fewer hydrogen bonds, with frequent intervals of no 
hydrogen bond formation, reflecting lower occupancy and reduced stability. This sug-
gests a weaker binding affinity of EED, which may compromise its biological activity. 
The ERα-2-Hydroxyestradiol complex (Fig.  9c) demonstrated hydrogen bond interac-
tions nearly equivalent to Fulvestrant, with consistent formation reflected by short fluc-
tuations. This pattern implies that 2-Hydroxyestradiol forms stable hydrogen bonds 
with ERα, supporting its potential as a Fulvestrant analogue. The ERα-Ethinylestradiol 
complex (Fig. 9d) exhibited moderate hydrogen bond formation, with stable interactions 
interspersed by fluctuations, indicative of moderate binding affinity and dynamic stabil-
ity within the complex. Comparatively, Fulvestrant exhibited the highest and most stable 
hydrogen bond occupancy, while EED showed the lowest, suggesting limited binding 
strength. 2-Hydroxyestradiol consistently displayed hydrogen bond interactions com-
parable to Fulvestrant, supporting its strong binding potential. Overall, these results 
reinforce the notion that stable hydrogen bonding within the ERα LBD is critical for 
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antagonist activity [49], and highlight 2-Hydroxyestradiol as the analogue most capable 
of replicating Fulvestrant’s interaction profile.

Table 5 integrates the key computational descriptors for Fulvestrant and the three 
selected ligands, including their docking scores, RMSD, RMSF, Rg, and hydrogen-bond 
interaction profiles. This consolidated presentation provides a clearer link between 
docking predictions, dynamic stability, and ADMET-related considerations (refer to 
Table 7), supporting the narrative that 2-Hydroxyestradiol maintains stability compara-
ble to Fulvestrant, while EED and Ethinylestradiol exhibit higher flexibility and less con-
sistent hydrogen-bonding despite their favourable docking scores.

3.3  Prediction of ADMET properties

A comprehensive ADMET evaluation was performed using ADMETlab 3.0 to assess 
both the physicochemical and pharmacokinetic properties of Fulvestrant and its 

Fig. 9  Number of hydrogen bonds formed between ERα and a Fulvestrant, b EED, c 2-Hydroxyestradiol, and d 
Ethinylestradiol during the MD simulation
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analogues, EED, 2-Hydroxyestradiol, and Ethinylestradiol. This analysis is important in 
predicting drug-likeness, metabolic behavior, systemic distribution, and toxicity liabili-
ties, all of which are crucial in determining their suitability as therapeutic candidates 
[50–53]. Figure  10a–d presents radar charts of physicochemical properties for each 
ligand, with the orange and pink regions representing upper and lower thresholds, 
respectively, and the blue line denoting observed values.

Ideally, ligand properties should fall within these ranges. All four ligands demon-
strated acceptable physicochemical characteristics, except for Fulvestrant, which exhib-
ited slightly elevated logD and logP values, exceeding the recommended upper limits. In 
contrast, the three analogues displayed values well within the acceptable range, suggest-
ing a more favorable physicochemical profile for drug development.

A systematic ADMET analysis was conducted to evaluate the pharmacokinetic prop-
erties, drug-likeness, and safety of Fulvestrant and its analogues, with the results sum-
marized in Table 6 and supported by ADMETlab 3.0 predictions. In terms of absorption, 
all four compounds demonstrated poor predicted intestinal absorption (HIA), which is 
consistent with their steroidal backbone and relatively low polarity. Fulvestrant and EED 
showed negligible absorption probabilities (≤ 0.001), while 2-Hydroxyestradiol (0.014) 
and Ethinylestradiol (0.0) displayed only marginally higher values. Distribution results 
showed that the steady-state volume of distribution (VDss) for all compounds was 
within the acceptable range (0.025–0.552 L/kg) [values not shown in Table 6), yet plasma 
protein binding (PPB) was uniformly high, exceeding 80% for all ligands. Fulvestrant 
(98.8%) and Ethinylestradiol (96.4%) exhibited the highest PPB, suggesting very low lev-
els of free drug in circulation. Notably, Ethinylestradiol demonstrated the highest prob-
ability of blood–brain barrier (BBB) penetration at 92%, followed closely by EED and 
2-Hydroxyestradiol at ~ 82 to 83%, whereas Fulvestrant showed relatively limited central 
nervous system (CNS) penetration. These findings imply that while Fulvestrant remains 
largely confined to systemic circulation, the analogues, particularly Ethinylestradiol, may 
exert effects within the CNS.

Table 5  Comparative computational evaluation of Fulvestrant and the three top-ranked analogues, 
integrating docking scores, MD-derived stability metrics (RMSD, RMSF, Rg), and hydrogen-bond 
characteristics to guide ligand prioritization
Ligand Docking 

Score (kcal/
mol)

MD Stability 
(RMSD)

RMSF Trend Compact-
ness (Rg)

Hydrogen-Bond 
Profile

Fulvestrant  − 6.49 Stable; 
low overall 
fluctuations

Moderate flexibil-
ity; low fluctuations 
across LBD core 
residues

Stable and 
compact

Forms 1–3 consistent 
H-bonds; serves as a ref-
erence stability standard

EED  − 10.80 Moderate 
stability; 
larger de-
viations than 
Fulvestrant

Elevated RMSF 
peaks in loop 
regions near the 
binding pocket

Stable and 
compact

Fluctuating H-bond pro-
file, fewer persistent H-
bonds than Fulvestrant

2-Hydroxyestradiol  − 10.63 Stable; very 
similar to 
Fulvestrant

RMSF pattern 
closely matches 
Fulvestrant

Stable and 
compact

1–2 stable H-bonds with 
high occupancy; com-
parable to Fulvestrant

Ethinylestradiol  − 10.36 Moderate 
stability

Higher RMSF peaks 
across multiple 
regions

Stable and 
compact

Moderate, variably per-
sistent H-bonds; lower 
dynamic stability than 
Fulvestrant
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Toxicity predictions provided critical insights into safety of the analogues. Fulvestrant 
displayed the most favorable toxicity profile, with a low AMES mutagenicity probability 
(0.198), very low hepatotoxicity (0.105), and moderate carcinogenicity (0.652). In con-
trast, EED showed high AMES mutagenicity (0.596), elevated hepatotoxicity (0.669), and 
very high carcinogenicity (0.913), raising significant safety concerns. 2-Hydroxyestra-
diol exhibited moderate AMES mutagenicity (0.514), high hepatotoxicity (0.739), and 
high carcinogenicity (0.895), reflecting a slightly better toxicity profile compared to EED 
but still unfavorable relative to Fulvestrant. Ethinylestradiol displayed low mutagenic-
ity (0.261), but very high hepatotoxicity (0.573) and carcinogenicity (0.905), which align 
with its well-documented tumor-promoting and hepatotoxic potential reported in the 
literature [54]. Although Ethinylestradiol displayed strong docking and pharmacokinetic 
properties, its inclusion in this study was for benchmarking purposes only. Ethinylestra-
diol is structurally similar to estradiol and widely used as a synthetic estrogen, making it 
a relevant comparator; however, its known carcinogenicity and non-genomic signaling 
effects preclude it from being considered as a therapeutic candidate [54].

In summary, the ADMET analysis highlights notable differences in the pharmacoki-
netic profiles of Fulvestrant and its analogues. Fulvestrant emerges as the safest com-
pound, though its pharmacokinetic limitations, such as poor absorption and extremely 

Fig. 10  Physicochemical property radar charts for a Fulvestrant b EED c 2-Hydroxyestradiol, and d Ethinylestradiol
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high PPB, constrain its effectiveness. EED demonstrated strong docking affinity; how-
ever, it is undermined by high mutagenicity and carcinogenicity risks. 2-Hydroxyestra-
diol offered a more balanced profile with predictable metabolism and rapid clearance, 
but its high hepatotoxicity and carcinogenicity probabilities remain concerning. Ethinyl-
estradiol stood out as pharmacokinetically attractive, given its high BBB penetration, low 
clearance, and relatively low mutagenicity, yet its prohibitive hepatotoxicity and carcino-
genicity render it unsuitable as a therapeutic analogue. To improve clarity and facilitate 
direct comparison across the analogues, the key ADMET features for each compound 
are summarized in Table 7, highlighting their relative performance across the ADMET 
categories.

Although 2-Hydroxyestradiol demonstrated strong binding affinity and dynamic sta-
bility comparable to Fulvestrant, its hepatotoxicity, carcinogenicity, and rapid clearance 
indicate that it cannot be directly advanced as a therapeutic analogue. Instead, our find-
ings suggest that 2-Hydroxyestradiol may serve as a lead scaffold, and future in vitro vali-
dation will be essential to determine whether modifications to the hydroxylated structure 
can retain ERα affinity while mitigating its reported hepatotoxicity. Furthermore, medic-
inal chemistry modifications (e.g., altering hydroxyl or side-chain substituents) or pro-
drug/delivery strategies could enhance its pharmacokinetic profile and reduce toxicity 
while retaining ERα binding affinity. Thus, this study provides valuable computational 
insights into potential Fulvestrant analogues; however, the findings should be regarded 
as predictive rather than definitive. Future work will focus on experimental validation, 
beginning with in vitro assays such as ERα binding affinity measurements, cytotoxic-
ity testing in ER+ breast cancer cell lines, and functional assays to confirm antagonistic 
activity. These studies, followed by in vivo pharmacokinetic and toxicity evaluations will 
be essential to establish the therapeutic relevance of the proposed analogues.

4  Conclusions
In this study, an integrated in silico workflow comprising molecular docking, MD simu-
lations, and ADMET prediction was employed to computationally evaluate Fulvestrant 
analogues for their predicted interaction with ERα. Among the screened compounds, 
EED, 2-Hydroxyestradiol, and Ethinylestradiol exhibited more favorable predicted bind-
ing affinities than Fulvestrant, with MD simulations revealing that 2-Hydroxyestra-
diol forms computationally stable and compact complexes comparable to Fulvestrant. 
ADMET analysis highlighted Fulvestrant as the safest molecule overall; however, it is 
computationally predicted to be limited by poor absorption and high plasma protein 
binding. EED demonstrated favorable docking performance but was compromised by 
predicted mutagenicity and carcinogenicity. In contrast, Ethinylestradiol, despite its 
predicted pharmacokinetic advantages, was excluded due to its known hepatotoxicity 
and tumor-promoting potential. Although 2-Hydroxyestradiol exhibited strong pre-
dicted binding and structural stability, its predicted hepatotoxicity, carcinogenicity, 
and rapid clearance suggest that it cannot be advanced directly as a therapeutic ana-
logue. Nevertheless, its favorable computational receptor interaction profile indicates 
that it may serve as a lead scaffold for future optimization through structural modifica-
tion or targeted delivery strategies aimed at improving its safety and pharmacokinetic 
characteristics.
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Despite these promising computational insights, several limitations must be acknowl-
edged. Docking scoring functions provide approximate estimates of binding affinity and 
may not fully capture entropic contributions or solvent effects. Similarly, the MD simu-
lations performed here are constrained by accessible timescales and may not completely 
represent the long-term conformational behaviors of the ERα-ligand complexes. In addi-
tion, ADMET predictions are derived from statistical and machine-learning models that 
may not accurately reflect in vivo pharmacokinetic or toxicity outcomes. As all findings 
presented in this study are entirely in silico, they should be interpreted as predictive 
rather than confirmatory. Furthermore, docking results may be sensitive to the proton-
ation states assigned to both ligand and receptor residues, and the 50 ns MD timescale 
may not fully capture slower conformational transitions of ERα, representing inher-
ent limitations of the computational approach. Consequently, experimental studies are 
required to validate the predicted interactions and to assess the biological relevance of 
the identified ligands. Future work should include in vitro ERα binding assays, cytotoxic-
ity and anti-proliferative studies in ER-positive breast cancer cell lines, and in vivo phar-
macokinetic and toxicity evaluations to experimentally validate these computational 
predictions. Overall, the present study provides a strong computational framework for 
guiding future in vitro and in vivo investigations.
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Table 7  Simplified ADMET profile summarizing key pharmacokinetic and toxicity characteristics of 
the screened ligands, indicating relative performance
Ligand Absorption Distribution Metabolism Excretion Toxicity
Fulvestrant Good Poor Moderate Moderate Low

EED Good Good Moderate Good High

2-Hydroxyestradiol Good Good Good Good High

Ethinylestradiol Good Poor Poor Moderate High
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